优于o1预览版,推理阶段KV缓存缩减一半,LightTransfer降本还能增效
优于o1预览版,推理阶段KV缓存缩减一半,LightTransfer降本还能增效LLM 在生成 long CoT 方面展现出惊人的能力,例如 o1 已能生成长度高达 100K tokens 的序列。然而,这也给 KV cache 的存储带来了严峻挑战。
来自主题: AI技术研报
5994 点击 2025-03-11 09:32
LLM 在生成 long CoT 方面展现出惊人的能力,例如 o1 已能生成长度高达 100K tokens 的序列。然而,这也给 KV cache 的存储带来了严峻挑战。
随着当前大语言模型的广泛应用和推理时扩展的新范式的崛起,如何实现高效的大规模推理成为了一个巨大挑战。特别是在语言模型的推理阶段,传统注意力机制中的键值缓存(KV Cache)会随着批处理大小和序列长度线性增长,俨然成为制约大语言模型规模化应用和推理时扩展的「内存杀手」。
近日,BitNet系列的原班人马推出了新一代架构:BitNet a4.8,为1 bit大模型启用了4位激活值,支持3 bit KV cache,效率再突破。
KV Cache 是大模型推理性能优化的一个常用技术,该技术可以在不影响任何计算精度的前提下,通过空间换时间的思想,提高推理性能。
用KV缓存加速大模型的显存瓶颈,终于迎来突破。 北大、威斯康辛-麦迪逊、微软等联合团队提出了全新的缓存分配方案,只用2.5%的KV cache,就能保持大模型90%的性能。 这下再也不用担心KV占用的显存容量过高,导致显卡不够用了。